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Multichannel Speech Enhancement by Raw
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Abstract—In recent years, waveform-mapping-based speech en-
hancement (SE) methods have garnered significant attention. These
methods generally use a deep learning model to directly process and
reconstruct speech waveforms. Because both the input and output
are in waveform format, the waveform-mapping-based SE methods
can overcome the distortion caused by imperfect phase estimation,
which may be encountered in spectral-mapping-based SE systems.
So far, most waveform-mapping-based SE methods have focused on
single-channel tasks. In this article, we propose a novel fully convo-
lutional network (FCN) with Sinc and dilated convolutional layers
(termed SDFCN) for multichannel SE that operates in the time
domain. We also propose an extended version of SDFCN, called
the residual SDFCN (termed rSDFCN). The proposed methods are
evaluated on three multichannel SE tasks, namely the dual-channel
inner-ear microphones SE task, the distributed microphones SE
task, and the CHiME-3 dataset. The experimental results confirm
the outstanding denoising capability of the proposed SE systems on
the three tasks and the benefits of using the residual architecture
on the overall SE performance.

Index Terms—Multichannel speech enhancement, raw
waveform mapping, fully convolutional network (FCN), inner-ear
microphones, distributed microphones.

I. INTRODUCTION

PEECH-related applications for both human-human and
S human-machine interfaces have garnered significant atten-
tion in recent years. However, speech signals are easily distorted
by additive or convolutional noises or recording devices, and
such distortion constrains the achievable performance of these
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applications. To address this issue, numerous speech enhance-
ment (SE) algorithms have been derived to improve the quality
and intelligibility of distorted speech and are widely used as
a preprocessor in speech-related applications, such as speech
coding [1], [2], assistive hearing devices [3], [4], and automatic
speech recognition (ASR) [5]. Generally speaking, SE methods
can be divided into two categories. The first category adopts a
single channel (also termed monaural) while the second cate-
gory uses multiple microphones (also termed multichannel) to
perform SE.

Traditional single-channel-based SE methods were derived
based on the characteristics and statistical assumptions of
clean speech and noise signals. Well-known approaches include
spectral-subtraction [6], the Wiener filter [7], [8], and the min-
imum mean square error (MMSE) [9]. Another category of
successful SE approaches is subspace-based methods, which
aim to separate noisy speech into two subspaces, one for clean
speech and the other for noise components. The clean speech
is then restored based on the information in the clean-speech
subspace. Notable subspace techniques include generalized sub-
space approaches with prewhitening [10], the Karhunen-Loeve
transform [11], and principal component analysis (PCA) [12].

Inrecent years, machine-learning-based algorithms have been
popularly used in the SE field. Unlike traditional methods,
a machine-learning-based SE approach generally prepares a
denoising model in a data-driven manner without imposing
strong statistical constraints. Well-known machine-learning-
based models include non-negative matrix factorization [13],
compressive sensing [14], sparse coding [15], and robust prin-
cipal component analysis (RPCA) [16]. More recently, deep
learning models have been applied to the SE field. Owing to their
outstanding nonlinear mapping capability, deep-learning-based
SE methods have demonstrated notable performance improve-
ments over traditional statistical methods and other machine-
learning-based methods. Well-known deep-learning-based mod-
els include the deep denoising autoencoder (DDAE) [17], [18],
deep fully connected networks [19]-[22], recurrent neural net-
works [23], [24], convolutional neural networks [25], [26], and
long short-term memory [27]-[30].

Different from single-channel SE methods, the multichannel
ones utilize information from plural channels to enhance the
target speech signal. Among the multichannel SE methods,
beamforming [31]-[33] is a popular method that exploits spatial
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information from multiple microphones to attenuate inference
and noise signals. In addition to beamforming, other effective
methods are based on a coherence algorithm that calculates
the correlation of multiple input signals to estimate a filter to
attenuate the interference components [34], [35]. Meanwhile,
Li et al. proposed a method of using distributed-microphones
for in-vehicle SE [36]. They argued the clean speech signals
acquired by distributed-microphones are similar to each other
while the noise signals acquired by distributed-microphones are
irrelevant to each other. Therefore, the RPCA algorithm [16]
is applied to the matrix formed by the acquired noisy signals
from multiple channels to separate clean speech and noise
components [36].

More recently, deep learning-based models also exhibit
encouraging performance in multichannel SE tasks. Araki et al.
showed that multichannel audio features can effectively improve
the performance of the denoising auto-encoder (DAE) [37]
based SE approach [38]. Wang and Wang proposed a deep
learning-based time-frequency (T-F) masking SE method that
estimates robust time delay of arrival over multiple singly-
enhanced speech signals to obtain directional features and hence
the beamformed signals. The enhancement is carried out by
combining spectral and directional features [39]. Although the
above-mentioned multichannel SE approaches have been able to
provide satisfactory performance, they are performed in the fre-
quency domain, i.e., they typically use the phase from the noisy
input and require additional processing to convert the speech
waveform into spectral features. To avoid imperfect phase
estimation and reduce online processing, waveform-mapping-
based audio signal processing methods have been developed.
For example, in [41]-[44], a fully convolutional network (FCN)
model was used to process the noisy waveform to generate an
enhanced waveform, and in [45], [46], the FCN model was used
to separate a singing voice from mono or stereo music.

In the present work, we propose a novel fully convolutional
network that incorporates Sinc convolutional filters (termed
SincConv) and dilated convolutional filters, to perform multi-
channel SE in the time domain. Therefore, the model is called
Sinc dilated FCN (termed SDFCN). In addition, we derive an
extended system from the SDFCN system. The extended system
structures a residual architecture in which SDFCN is used to
estimate and compensate for the residual components of the en-
hanced speech from a primary SE model. Therefore, it is named
residual SDFCN (termed rSDFCN). We evaluate the proposed
models on three multichannel SE tasks: inner-ear microphones
(termed the IEM-SE task), distributed-microphones (termed the
DM-SE task), and the CHiME-3 dataset [65]. For these tasks,
the proposed SE models take inputs from multiple channels to
generate a single-channel waveform with higher quality and
intelligibility than individual noisy inputs. Two standardized
metrics are used in the evaluation: short-time objective intel-
ligibility (STOI) [47], [48] and perceptual estimation of speech
quality (PESQ) [49]. In addition, we conduct subjective listening
and speech recognition tests with the enhanced speech signals.
Our experimental results confirm the outstanding denoising
capability of the proposed SDFCN and rSDFCN models in all
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Fig. 1. A waveform-mapping-based SE system.

three multichannel SE tasks, demonstrating the benefits of using
the residual architecture on the overall SE performance.

The remainder of this paper is organized as follows. Section II
reviews the related works. Section III presents the concept and
architectures of the proposed SDFCN and rSDFCN models.
Section IV presents the experimental setup and results. Finally,
Section V concludes this work.

II. RELATED WORKS

Given a clean speech signal x, the degraded signal can be for-
mulated as y = g(x), where g denotes the degradation function.
The goal of SE is to find a function that maps y to X that approx-
imates x as close as possible. In this section, we review related
works, including the FCN-based waveform-mapping-based SE
method, SincConv filters, and dilated convolutional filters.

A. Waveform-Mapping-Based SE

Previous studies have shown that the FCN model is suitable
for waveform-mapping-based SE because the convolutional lay-
ers can more effectively characterize the local information of
neighboring input regions [40]. FCN is a modified convolutional
neural network (CNN) model in which the fully connected layers
in CNN are completely replaced by the convolutional layers,
as shown in Fig. 1. In FCN, the relation between each sample
point X; of the output X and the last connected hidden nodes
hy € RY*! can be represented by

)A(t = VTht + b, (1)

where v € RL*! denotes a convolutional filter, b is a bias term,
and L is the size of the filter. Note that v and b are shared in the
convolution operation and are fixed for every output. Because
the pooling step may reduce the precision of speech signal
reconstruction, we did not apply any pooling operations (e.g.,
WaveNet [50]) to perform SE when using FCN. For more details
about the structure of the FCN model applied to waveform-
mapping-based SE, please refer to previous works [40], [41],
[50].

B. SincConv Filters

As mentioned above, convolutional filters are often used to
process raw-waveforms. When the CNN model is too deep or
the training data is insufficient, the filters of the first few layers
may not be well learned because of the vanishing gradient
issue. To overcome this issue, Ravanelli ef al. [51] recently
proposed a novel convolutional architecture, called SincNet.
Unlike conventional CNN models that learn all filters based on
training data, SincNet predefines the filters of the first few layers
to model the rectangular band-pass filter-banks in the frequency
domain. Specifically, assuming that the filter function of the first
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Fig. 2. Input (I) and output (O) with two-layered dilated convolutional filters.

layer is v, which will be convolved with the input signal y, then
v can be written as follows:

V=SO0OWwW

St = 2 f10wSINC(27 fiowt) — 2 frignsine(2m frignt)
t
w; = 0.54 — 0.46 cos <7;>

where o is component-wise multiplication, L is the filter length,
and fiow and fpign are the low and high cutoff frequencies
learned during training, respectively. Obviously, this architec-
ture is much more efficient because each filter in the first layer
only consists of two coefficients rather than L (the original filter
length) coefficients. In [51], it was shown that SincNet converged
faster in training and performed better in testing than CNN
on a speaker recognition task when the input was raw speech
waveform.The smaller number of neurons enables SincNet to be
well trained even on a dataset with a limited amount of training
data [51].

C. Dilated Convolution

Previous works, such as WaveNet [50], Conv-TasNet [52],
and WaveGAN [53] have shown that using a large temporal
context window is important in waveform modeling. To effi-
ciently take advantage of the long-range dependency of speech
signals, dilated convolution was proposed in [54]. In [43], [50],
[54], the effectiveness of the dilated convolutional layers was
shown to expand the receptive field exponentially (rather than
linearly) with depth. Fig. 2 shows an example that demonstrates
the concept of dilated fully convolutional filters. The input signal
(D) is processed by a dilated convolutional block to generate the
output signal (O).

The input sequence has 18 points. When using a one-
dimensional fully convolutional filter to process the input signal,
the number of receptive fields is 18. On the other hand, when
using a dilated fully convolutional block with filter sizes of 2, 3,
and 3 and dilated rates of 1, 2, and 6, the receptive field is also
18. Compared to a single-layered FCN block, with the same size
of receptive fields, the dilated fully convolutional block requires
only half the number of parameters but four times the depth,
suggesting that the dilated fully convolutional block can have
a deeper architecture than the conventional fully convolutional
filter when the total number of parameters is fixed.

III. THE PROPOSED MULTICHANNEL SE SYSTEM

In this section, we first introduce the proposed SDFCN mul-
tichannel SE system. Then, we explain the extended system,
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Fig. 3. Architecture of the SDFCN multichannel SE system. Each of four
blue rectangles denotes one dilated convolutional layer, and the parameters are
denoted as follows: (p1, p2) Conv p3, where pl is the kernel size, p2 is the
dilated rate, and p3 is the number of filters (channels).
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Fig. 4.  Architecture of the dilated convolutional block in the SDFCN model.

rSDFCN. The design concept and architectures of SDFCN and
rSDFCN are presented in detail.

A. The SDFCN System

Fig. 3 shows the architecture of the proposed SDFCN mul-
tichannel SE system, which consists of a SincConv layer and
a dilated FCN (termed DFCN) module. The DFCN module
consists of four layers of dilated convolutional blocks (Dilated
Conv Block in Fig. 3), four dilated convolutional layers, and
a tanh activation function layer. A skip-connection scheme
is adopted to provide additional low-level information to the
higher-level process. From our preliminary experimental results,
we note that with such a skip-connection scheme, the SDFCN
model can be trained more efficiently. Given the multichannel
inputs: Y = [y1,y2,...,yn~], where N denotes the number of
channels, we have

X = fDFCN(fSincConv(Y))7 (2)

where fsinccony(+) and fpron(+) denote the mapping func-
tions of the SincCnov layer and the DFCN module, respectively.
Fig. 4 shows the architecture of the dilated convolutional blocks
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(Dilated Conv Block in Fig. 3) in the SDFCN model. The
block consists of four dilated convolutional layers (the four blue
rectangles) followed by batch normalization and LeakyRelu.
The receptive field of the dilated convolutional block is 54
(2x3x3x3).

B. The Residual SDFCN (rSDFCN) System

Recently, residual structures have been popularly used in neu-
ral network models to attain better classification and regression
efficacy. In speech signal generation tasks, residual connections
also yield promising performance because the residual connec-
tion provides a linear shortcut, and the non-linear part of the
network only needs to deal with the residuals (differences) of
the estimated and reference signals, which are usually easier
to model. In this work, we also explore the combination of the
residual structures with SDFCN. This combined model is termed
the residual SDFCN (rSDFCN). The architecture of an rSDFCN
multichannel SE system is shown in Fig. 5.

As can be seen from the figure, an additional SE module (the
pre-trained FCN in Fig. 5) is used. This SE module is treated
as the primary SE module, and the output of the primary SE
module is combined with the output of the SDFCN system to
form the final enhanced output. The formulation of the rSDFCN
can be represented as:

x = fpren(fsinccon(Y), frr(Y)) + fpr(Y), (3)

where fp,(-) is the mapping function of the primary SE module.
When implementing the rfSDFCN system, we first pre-train the
primary SE module and then train the SDFCN system. In this
way, the SDFCN system learns the residual components (or
differences) of the clean reference and the enhanced output of
the primary SE module. More specifically, the SDFCN system is
trained with the aim of minimizing the following loss function:

||fDFCN(fSincCo7w (Y)7 fPT(Y)) - [X - fPT(Y)]H2 (4)

In this paper, we use a pre-trained FCN model as the primary
SE module. Its architecture is shown in Fig. 6. The module
consists of seven layers of convolution blocks, a convolutional
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Fig. 6.  Architecture of the FCN model that is used as the primary SE module in
the proposed rSDFCN system. We use p1 Conv pa to represent a convolutional
layer with ps filters and kernel size of py.

layer, and a tanh activation function layer. Each convolution
block consists of a convolutional layer (with length = 55 and
channel = 64), batch normalization, and LeakyRelu. When
implementing the rSDFCN, this pre-trained FCN can be pre-
pared beforehand using a different training set. Please note that
the architectures of the FCN, SDFCN, and rSDFCN presented
above are designed based on the datasets used in this study. The
parameters, including the numbers of layers and channel filters
and the kernel size can be adjusted according to the target task.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we first introduce the experimental setup for
the IEM-SE and DM-SE tasks!. Then, we present the results of
the proposed SDFCN and rSDFCN systems for these two tasks.
Finally, we discuss the performance of the rSDFCN system on
several subsets of the CHiME-3 dataset with different subset
size. For IEM-SE and CHiME-3 task, we also discuss the
effectiveness of dilated convolution and SincConv layer.

A. Experimental Setup

We evaluated the SE performance in terms of two standard
objective metrics: STOI [47], [48] and PESQ [49]. The STOI
score ranges from O to 1, and the PESQ score ranges from
0.5 to 4.5. For STOI and PESQ, a higher score indicates that
the enhanced speech signal has higher intelligibility and better
quality, respectively, with reference to the speech signal recorded
by the near-field high-quality microphone. In addition, we also
conducted listening tests and evaluated the speech recognition
performance of enhanced speech in terms of the Chinese charac-
ter error rate (CER) using Google Speech Recognition [55]. For
comparison, we implemented a DDAE-based multichannel SE
system [17], [18]. In previous studies, the single-channel DDAE
approach has shown outstanding performance in noise reduc-
tion [56], dereverberation [57], and bone-conducted speech en-
hancement [58]. Here, we extended the original single-channel
DDAE approach to form a multichannel DDAE system. Fig. 7

!'Speech samples and codes can be found via: [Online]. Available: https://yu-
tsao.github.io/MCSE/
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Fig. 7.  Architecture of the DDAE multichannel SE system.

shows the architecture of the multichannel DDAE system, which
consists of five dense layers. The input is multiple sequences
of noisy spectral features (log-power spectrogram (LPS) in this
study) from the multiple channels, and the output is a sequence of
enhanced spectral features. The phase of one of the noisy speech
utterances was used as the phase to reconstruct the enhanced
waveform. All neural network models were trained using the
Adam optimizer [59] with a learning rate of 0.001. The « value
of LeakyReLU was set to 0.3.

B. The Inner-Ear Microphones-SE Task

When speech signals are recorded using inner-ear micro-
phones, interference from the environment can be blocked,
so that purer signals can be captured. However, owing to the
different transmission pathways, the speech signals captured by
the IEMs exhibit different characteristics from those recorded by
normal air-conducted microphones (ACMs). Generally speak-
ing, the high-frequency components of speech recorded by
an IEM are suppressed, thereby notably degrading the speech
quality and intelligibility. Moreover, owing to the loss of high-
frequency components, IEM speech cannot provide a satisfac-
tory ASR performance.

For the IEM-SE task, we intend to transform the speech
signals captured by a pair of IEMs into ACM-like speech signals
with improved quality and intelligibility. In the past, there have
been some studies on IEM-to-ACM transformation. In [60],
[61], bandwidth expansion and equalization techniques were
used to map the IEM speech signals to the ACM ones. Because
the mapping function between IEM and ACM is nonlinear
and complex, traditional linear filters may not provide opti-
mal performance. In the present study, we propose to perform
multichannel SE in the waveform domain for IEM-to-ACM
transformation.

Our recording condition is shown in Fig. 8. A male speaker sat
in a sound booth (3 m x 5.2 m, 2 m in height) and wore a pair of
IEMs and a near-mouth ACM. The three microphones simulta-
neously recorded speech signals spoken by the male speaker. The
recording scripts were the Taiwan Mandarin Chinese version of
Hearing in Noise Test (TMHINT) sentences [62]. There were
250 utterances for training and another 50 utterances for testing.
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Fig. 8. Recording setting of IEM-SE task. There is a near-mouth microphone
and two IEMs in both ears [73].

All utterances were recorded at a 16,000 Hz sampling rate then
truncated to speech segments, with each segment containing
36,500 sample points (around 2.28 seconds).

Before discussing the results of the proposed SDFCN and
rSDFCN systems, we first verified the effectiveness of dilated
convolution and SincConv layer. There were totally four models
trained in this set of experiments. We compared FCN-55 with
DCN-54 to show the effect of dilated convolution. The benefits
of SincConv layer were shown by comparing FCN-251 with
SincFCN-251. FCN-55 is similar to regular FCN shown in Fig. 6,
but it has only four layers in total. DCN-54 was designed by
replacing the last three Conv layers in FCN-55 with dilated
convolutional block shown in Fig. 4, where the kernel size is
55. The reason for using four-layer models is that models with
less than four layers could not enhance utterances well in our
preliminary experiments. As mentioned in the previous section,
the receptive field of the dilated convolutional blocks was set
to be 54 to approximate the kernel size used in FCN. FCN-251
was designed by changing the kernel size of the first Conv layer
in FCN-55 from 55 to 251, and SincFCN-251 was designed by
replacing the first Conv layer in FCN-251 with a SincConv layer.
The reason that we changed the kernel size of the first layer was
to make it have the same size as the original work [51]. For a
fair comparison, the numbers of filters of all models trained and
tested in the experiment are 30.

Table I lists the average STOI and PESQ scores of the original
speech signals captured by the left and right IEMs (denoted as
IEM (L) and IEM (R), respectively) and the enhanced speech
signals by the four models mentioned above. The corresponding
ACM speech was used as the reference to compute the scores.
By comparing the results of the middle columns in Table I, we
observe that the STOI and PESQ scores can be further improved
by the dilated convolutional layer. The results in the last column
in Table I show that the SincConv layer performs much better
than the original convolutional layer.

Fig. 9 shows the learning curves of the four models in terms
of the MSE scores. When computing the MSE scores, we
have pre-processed each utterance by normalizing the waveform
samples by the peak amplitude. From Table I and Fig. 9, we can
see that although their losses (MSE) converge to a similar value,
the training speed of SincFCN-251 is much faster, and the corre-
sponding STOI and PESQ scores are also higher than others. Itis
also noted that, DCN-54 and SincFCN-251 outperform FCN-55
and FCN-251 in terms of STOI and PESQ, respectively, which
confirms the effectiveness of the dilated convolution block and
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TABLE I
AVERAGE STOI AND PESQ SCORES OF FCN-55, DCN-54, FCN-251, SINCFCN-251, WITH SINGLE-CHANNEL/MULTICHANNEL INPUTS FOR IEM-SE TASK

No. of ch. 1 1 2 2 2 2
Model IEM(L) IEM(R) | FCN-55 DCN-54 | FCN-251  SincFCN-251
STOI 0.694 0.694 0.801 0.817 0.727 0.843
PESQ 1.146 1.101 1.317 1.360 1.171 1.476
0.014 r . 8000
—%— FCN-55 7000
—+— DCN-54
0.013 - FCN-251 o0
—6&— SincFCN-251 5000

o
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Fig.9. MSEonthetestsetof FCN-251, DCN-54, FCN-251, and SincFCN-251
over training epochs.

TABLE 11
AVERAGE MSE SCORES OF FCN-55, DCN-54, FCN-251, AND SINCFCN-251
FOR IEM-SE TASK

No. of ch. 2 2 2 2
Model FCN-55 DCN-54 | FCN-251  SincFCN-251
MSE 0.171 0.165 0.179 0.175

SincConv layer. Also, from Table I, we can observe that FCN-55
outperforms FCN-251, which implies that the performance of
FCN may not be improved by just increasing the kernel size of
the convolutional layers. In Table II, we further list the average
MSE scores of FCN-55, DCN-54, FCN-251, and SincFCN-251
under the 180 training epoch condition in Fig. 9. The results
in the table show that DCN-54 and SincFCN-251, respectively,
yield lower MSE scores as compared to FCN-55 and FCN-251,
again confirming the benefits of the dilated convolution and
SincConv.

To visually compare FCN and SincConv, we plot the learned
filters of FCN-251 and SincFCN-251 in Fig. 10 (for a clearer
presentation, we only used 30 filters for both FCN and SincConv
to plot Fig. 10). In the meanwhile, we plot the extracted features
of an utterance from FCN and SincConv layers in Fig. 11
(for a clearer presentation, we only used seven filters for both
FCN-251 and SincFCN-251 to obtain the features in Fig. 11).
From Figs. 10 and 11, and Table II, we can note that our
experiment results are quite consistent with those in the previous
works [51], [68], [69]. From Fig. 10(b), we can see that the
SincConv layer learns a filter bank containing more filters with
high cut-frequencies compared to the traditional convolutional
layer. The filters learned by FCN, as shown in Fig. 10(a), do not
cover all the frequency ranges. We note that this phenomenon is
due to the limited amount and coverage of training data, and the
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Fig. 10. Frequency responses of the learned filters of (a) the first layer of
FCN-251 and (b) the SincConv layer of SincFCN-251.
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Fig. 11. Extracted features of an utterance audio from convolution by the
filters of the first layers of (a) FCN-251 and (b) SincFCN-251.

high frequency ranges become clearer when a sufficient amount
and coverage of training data is available [41]. From Fig. 11,
we can observe that the first-layered features of SincFCN-251
contain more high frequency components than FCN-251. In ad-
dition, the results in Table II are consist with those in [69]: With
dilated convolution, the network can more accurately model
ground-truth waveforms in terms of MSE.

Furthermore, to investigate the effectiveness of using multiple
(dual) channels, we also compared the SDFCN model trained
with dual-channel input and that trained with single-channel
input. The results are denoted as SDFCN (using dual-channel
inputs), SDFCN(L) (using the left channel only) and SDFCN(R)
in the left part of Table III. From the table, we first note that
SDFCN(L) and SDFCN(R) achieve improved STOI and PESQ
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TABLE III
AVERAGE STOI AND PESQ SCORES OF DIFFERENT SINGLE-CHANNEL/MULTICHANNEL SE MODELS FOR THE IEM-SE TASK
No. of ch. 1 1 2 2 2 2 2
Model SDFCN(L) SDFCN(R) SDFCN | DFCN FCN DDAE rSDFCN
STOI 0.861 0.824 0.880 0.867 0.834 0.773 0.894
PESQ 1.631 1.597 1.643 1.562 1.446 1.939 1.986
Waveform Spectrogram 90.00%
© F
1 - 10.00%
2 g
g }; 88.67% SDFCN m
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= gﬁw,,rgm\,.,% WAy Y Fig. 13. Results of the AB preference test (with 95% confidence intervals)
(b) = / ) on speech quality compared between the proposed rSDFCN with IEM(L) and
« E DDAE for the IEM-SE task.
-1
0 1 2
Time (second) Time (second)
30
1 _
5 2 2 e 7
3 2 4
=
© oMV B =
E Qg: g 15
> 8
T 1 2 0
Time (second)
5
1
= N %
; : |
) E_ 0 - g Fig. 14.  ASR results achieved by different SE models for the IEM-SE task.
=
i £
) 1 2 ' O s
T ’
Time (second) Time (second) III
1 8 s 3 II/
@ E ! I'I
E % )
20 W - gy ' { 0
(e) g g e \“ U1
E ;\" \\
T 1 2 ’ N 2 5
Time (second) Time (second) “\‘
\U\ IV“‘
Fig. 12.  Waveforms and spectrograms of an example utterance in the IEM-SE '
task: (a) recorded speech by near-mouth microphone; (b) and (c) recorded speech Fig. 15. Recording setting for the DM-SE task. There is a near-field high-

by right and left IEMs, respectively. (d) and (e) enhanced speech by rSDFCN
and DDAE, respectively.

scores over IEM(L) and IEM(R), as shown in Table I, respec-
tively. The results confirm the effectiveness of the proposed
SDFCN system for single microphone SE. Next, we note that
SDFCN outperforms both SDFCN (L)and SDFCN(R), confirm-
ing the advantage of the multichannel (dual-channel) mode over
its single-channel counterparts.

Next, we report the results of rSDFCN in the right part of
Table III. To confirm the effectiveness of SincConv, we replaced
the SincConv layer in SDFCN with a normal convolutional layer,

quality microphone and five far-field lower-quality microphones. Distances of
near-field microphone to far-field microphones are all 1 meter.

denoted as DFCN. FCN denotes the results of the pre-trained
FCN module used in rSDFCN. Comparing the results of SDFCN
and DFCN in Table III, we confirm the effectiveness of SincConv
for the SE task. Comparing the results of SDFCN, FCN and
rSDFCN in Table III, we confirm the effectiveness of the residual
architecture for the SE task. Next, we note that both SDFCN and
rSDFCN outperform the baseline DDAE system while -SDFCN
outperforms SDFCN.
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TABLE IV
AVERAGE STOI AND PESQ SCORES OF RSDFCN AND DDAE FOR THE DM-SE TASK.

AVG. STOI/PESQ STOI PESQ

Input Microphone(s) Unenhanced DDAE rSDFCN Unenhanced DDAE rSDFCN

I 0.872 0.823 0.932 1.602 1.618 1.648

I 0.896 0.814 0.930 1.736 1.606 1.656

111 0.888 0.813 0.931 0.526 1.623 1.644

v 0.881 0.813 0.931 1.495 1.581 1.642

v 0.893 0.816 0.931 1.727 1.581 1.646

LI,V 0.823 0.950 1.655 1.780

I IL 1L, IV, V 0.829 0.954 1.635 1.826

In addition to comparing the objective scores, we also con-
ducted qualitative analysis. Fig. 12(a), (b), (c), (d), and (e)
show the waveforms and spectrograms of the near-field ACM,
IEM(L), and IEM(R) speech signals and the enhanced speech
signals obtained by rSDFCN and DDAE, respectively. By com-
paring Fig. 12(a), (b), and (c), we can easily note that the
IEM speech signals suffer from notable distortion, with high-
frequency components being suppressed. Next, by comparing
Fig. 12 (a) and (d), we note that the proposed rSDFCN mul-
tichannel SE approach can generate an enhanced speech signal
similar to the ACM recorded speech signal. We can also observe
that the DDAE-enhanced speech signal has a clearer structure in
the high-frequency components while exhibiting some distortion
in the low-frequency components.

To subjectively evaluate the perceptual quality of the en-
hanced speech, we conducted AB reference tests to compare the
proposed rSDFCN with the original IEM speech (here IEM(L)
was used since it gave slightly higher PESQ scores in Table I).
For comparison, the DDAE enhanced speech was also involved
in the preference test. Accordingly, three pairs of listening tests
were conducted, namely rfSDFCN versus IEM, DDAE versus
IEM, and rSDFCN versus DDAE. Each pair of speech samples
were presented in a random order. For each listening test, speech
samples were randomly selected from the test set. 15 listeners
participated in the listening test. Listeners were instructed to
select the speech sample with better quality. The stimuli were
played to the listeners in a quiet environment through a set of
Sennheiser HD headphones at a comfortable listening level. The
results of the AB reference tests are presented in Fig. 13. From
the figure, it is clear that fSDFCN and DDAE outperform IEM
with notable margins, confirming the effectiveness of these two
SE approaches. Next, we note that rfSDFCN yields a higher
preference score compared to DDAE, showing that rSDFCN
can more effectively enhance the IEM speech.

Finally, we tested the ASR performance in terms of the charac-
ter error rate (CER). The results of the speech recorded by ACM,
IEM(L), and IEM(R) and the enhanced speech by the rSSDFCN
and DDAE are shown in Fig. 14. The CER of the ACM-recorded
speech is 9.2%, which can be regarded as the upper-bound. The
CERs of the speech recorded by IEM(L) and IEM(R) and the
enhanced speech by rfSDFCN and DDAE are 26.9%, 26.0%,
16.8%, and 28.6%, respectively. From the results, we note that
rSDFCN can improve the ASR performance over IEM(L) and
IEM(R). Compared with IEM(L), CER decreased by 35.38%
(from 26.0% to 16.8%). Comparing the results in Figs. 13 and 14
and Table III, we note that -ISDFCN outperforms DDAE in terms

of PESQ, STOI, subjective preference test scores, and ASR
results, confirming the effectiveness of the proposed rSDFCN
over the conventional DDAE approach for the IEM-SE task.

C. The Distributed Microphone-SE Task

For the DM-SE task, we also used the scripts of the TMHINT
sentences to prepare the speech dataset. The layout of the record-
ing is shown in Fig. 15. A high-quality near-field micro-phone
(Shure PGA181 [63]) was placed right in front of the speaker
and five lower-quality microphones (all of the same brand and
model: Sanlux HMT-11 [64]) were located at the five vertices
of the regular hexagon, 1 meter away from the speaker. The
room size is 15.5 m x 11.2 m and 3.27 m in height. We labeled
the lower-quality microphones in counterclockwise order from
I to V starting from the microphone in front of the speaker.
Herein, the goal was to generate an enhanced (high-quality)
speech signal using the speech signals recorded by the distant
and lower-quality microphones. To validate the effectiveness of
using multiple channels for SE, we designed seven scenarios:
five single-channel SE scenarios where the input consisted of the
speech signal recorded by one of the five microphones [(I), (IT),
(III), (IV), or (V)] and the output was the enhanced speech signal,
and two multichannel SE scenarios, where the input consisted
of the speech signals recorded by three microphones (I, II, and
V) and five microphones (I, II, IIL, IV, and V) and the output was
the enhanced speech signal. For this set of experiments, we used
250 utterances for training and another 50 utterances for testing.
All utterances were recorded at 16,000 Hz and then truncated to
speech segments, with each segment containing 36,500 sample
points (around 2.28 seconds).

It is worth noting that although both IEM- and DM-SE tasks
are multichannel SE scenarios, there are clear differences be-
tween them. For the IEM-SE task, the high-frequency com-
ponents of the IEM speech signals are suppressed. In other
words, the IEM speech resembles the low-pass-filtered ACM
speech. Meanwhile, for the DM-SE task, the speech signals
recorded by microphones I, II, III, IV, and V were degraded
versions of the speech recorded by the near-field microphone
owing to lower-quality recording hardware, long-range fading,
and room reverberation. As with the IEM-SE task, we tested the
performance of rSDFCN and DDAE.

Table IV show the average STOI and PESQ scores of -ISDFCN
and DDAE under seven conditions. The scores of the speech
recorded by the far-field microphone (using the corresponding
speech recorded by the near-field microphone as a reference)
are also listed for comparison. From the tables, we can easily
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Fig. 16.

Waveforms and spectrograms of an example utterance in the DM-SE task: (a) speech recorded by near-field microphone; (b) speech recorded by second

far-field microphone (channel II); (c) and (e) enhanced speech by rSDFCN and DDAE with single-channel in-put; (d) and (f) enhanced speech by rSDFCN and

DDAE with five channels of input.
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Fig. 17. Results of the AB preference test (with 95% confidence intervals) on
speech quality compared between rSDFCN, FFM(II) and DDAE for the DM-SE
task.

see that rSDFCN can improve the STOI and PESQ scores when
multichannel inputs are used. When only one input is available
(the task becomes a single-channel SE task), rfSDFCN outper-
forms DDAE consistently across all of the five cases (single
far-field microphone I, II, III, IV, and V). Meanwhile, for the
multichannel task (I, II, V and I, II, III, IV, V), rfSDFCN also
outperforms DDAE. In addition, it is clear that the results of
multichannel SE are superior to those of single-channel SE, im-
plying that multichannel signals can provide useful information
to more effectively enhance speech signals.

For qualitative analysis, the waveforms and spectrograms of
a speech utterance recorded by the near-field microphone and
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Fig. 18.  ASR results achieved by different SE models for DM-SE task.

the far-field microphone (channel II), along with the enhanced
speech from rSDFCN and DDAE are shown in Fig. 16. For
multichannel SE, we display the waveforms and spectrograms
of the enhanced speech using five channels (I, II, III, IV, and
V). From Fig. 16(d) and (f), we can observe that DDAE pro-
vided a relatively clear structure of restored spectrogram, and
rSDFCN outperformed DDAE when comparing the waveform
plots in contrast. This result is reasonable because DDAE aims
to minimize the MSE of spectral magnitude, while rfSDFCN
aims to minimize the MSE in the waveform domain. Because
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DDAE only enhances the magnitude spectrogram but not the
phase information, it needs to borrow the phase information
from the noisy speech when generating the speech waveforms.
This may explain why DDAE performed worse than rSDFCN
in terms of STOI and PESQ, as shown in Table IV, even though
the spectrograms generated by DDAE were more similar to the
ground-truth. This result is also consistent with those reported
in previous works [70]-[72].

We also conducted listening tests on the enhanced speeches by
rSDFCN, DDAE and the recorded speech by the second far-field
microphone, termed FFM(II) (the channel II in Fig. 15, which
achieved the highest PESQ score, as shown in Table 1V). The
results are shown in Fig. 17. From the figure, we note that DDAE
cannot improve the speech quality effectively. A possible reason
is that the distortions caused by distance does not affect the
speech quality too much. Thus, although the DDAE approach
can recover missing speech signal components, it may generate
distortions and accordingly deteriorate the speech quality. In
the meanwhile, we note that the rfSDFCN can yield higher
speech quality scores than the DDAE, confirming that rSDFCN
is superior to DDAE in terms of subjective listening evaluations.
Finally, we note that the rSDFCN enhanced speech and the one
recorded by the second far-field microphone give comparable
listening preference scores (50.71% versus 49.29%).

The recognition results using Google ASR are shown in
Fig. 18. We report the performance of the speech recorded by
the near-field microphone (as the upper-bound) and the second
far-field microphone, namely, FFM(II) (channel II in Fig. 15,
which achieved the best ASR results in our experiments) and
the enhanced speech by DDAE and rSDFCN; the correspond-
ing CERs are 9.8%, 14.4%, 18.0%, and 10.4%, respectively.
From the CERs in Fig. 18, we first note a clear drop in ASR
performance from near-field microphone speech to far-field
microphone speech. Next, we note that the CER of the 'SDFCN
enhanced speech (10.4%) is much lower than that of the far-field
microphone speech (14.0%) and close to that of the near-field
microphone speech (9.8%). More specifically, the 'SDFCN mul-
tichannel SE system reduced the CER by 27.8% (from 14.4%
to 10.4%) compared to the unenhanced single-channel far-field
microphone speech. Comparing the results in Figs. 17 and 18
and Table IV, we note that rSDFCN outperforms DDAE in
terms of PESQ, STOI, subjective preference test scores, and
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ASR performance, confirming the effectiveness of the proposed
rSDFCN over the conventional DDAE approach for the DM-SE
task.

D. Speech Enhancement on the CHIiME-3 Dataset

To further validate the effectiveness of using multichannel in-
puts for SE, we also tested our rSDFCN system on the CHiME-3
dataset [65]. As documented, the clean (reference) speech in
the CHiME-3 training set was directly copied from the WSJO
corpus [66], while the reference speech in the CHiME-3 testing
set was generated from the booth recording. In this study, we
directly used the clean speech as the reference to compute the
STOI and PESQ scores of the enhanced speech. We tested our
rSDFCN system on the simulated speech data of the CHiME-3
dataset. The simulated data is built by mixing clean speeches
of the Wall Street Journal (WSJO) corpus with four different
real background noises: bus (BUS), cafeteria (CAF), pedestrian
zone (PED) and street (STR). All the clean speeches and the
noises are recorded by a 6-microphone array on a tablet. The
total simulated set contains 7138 utterances, including 1728 of
BUS, 1794 of CAF, 1765 of PED, and 1851 of STR. The goal
is to use recorded six-channel noisy speeches as the input to
generate enhanced speech. In our experiments, we trimmed all
utterances to speech segments, each containing 36,500 sample
points (around 2.28 seconds). Because the CHiME-3 dataset is
far larger than the two datasets used in previous experiments,
we also conducted experiments to explore the enhancement
performance with respect to different numbers of training ut-
terances. Note that in this experiment, we trained our model on
utterances of PED, STR and CAF, and tested them on BUS
because BUS was the most difficult for rSDFCN to archieve
improvements over DDAE and FCN in our preliminary exper-
iments. Fig. 19 shows the STOI and PESQ scores of FCN and
rSDFCN with respect to different numbers of training utterances.
From Fig. 19(a), we can see that -SDFCN, which contains the
dilated and Sinc convolutional layers, achieves much higher
STOI scores than FCN when the number of training utterances
is limited. This implies that the benefits of the dilated and Sinc
convolutional layers are more significant when the training set is
small. Similar trends were also observed for the PESQ scores,
as shown in Fig. 19(b).
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TABLE V
AVERAGE STOI/PESQ SCORES OF RSDFCN AND DDAE EVALAUATED ON THE CHIME-3 DATASET, WHERE I, II, III, IV, V, AND VI DENOTE THE SINGLE
CHANNEL RESULTS, CORRESPONDING TO PERFORMING SE USING CHANNEL 1, 2, 3, 4, 5, AND 6, RESPECTIVELY, AS SHOWN IN FIG. 1 OF THE CHIME-3 PAPER
[65]; I-VI DENOTES THE RESULTS OF USING MULTICHANNEL (S1X-CHANNEL) INPUTS
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AVG. STOI/PESQ STOI PESQ
Input Microphone(s) Unenhanced DDAE rSDFCN Unenhanced DDAE rSDFCN

1 0.847 0.825 0.878 1.208 1.478 1.592

I 0.863 0.826 0.880 1.244 1.465 1.604

1T 0.844 0.828 0.880 1.198 1.466 1.620

I\ 0.884 0.824 0.879 1.308 1.462 1.614

\Y 0.893 0.827 0.876 1.337 1.469 1.598

VI 0.833 0.825 0.880 1.185 1.466 1.628

I- VI 0.853 0.937 1.621 2.145

Next, Table V shows the average STOI and PESQ scores REFERENCES

of rSDFCN and DDAE with single-channel and multichannel
inputs. Since there are four types of the background noises, we
set utterances with one type of noise as the test set and use all
utterances with the other three types of noises as the training
sets in turn. This leave-one-out training and testing procedure
repeated four times, and the average STOI and PESQ scores
from the four sets of results were reported in Table V. Similar
to the trends in the previous two datasets, Table V shows that
the scores of multichannel-based rSDFCN are much higher than
those of DDAE and single-channel-based rSDFCN.

V. CONCLUSION

In this paper, we proposed the SDFCN waveform-mapping-
based multichannel SE system and an extended version, rSD-
FCN. We tested the proposed SE systems on three multichannel
SE tasks: IEM-SE, DM-SE and CHiME-3. The experimental
results for the three tasks confirmed the effectiveness of the
proposed systems in achieving higher STOI and PESQ scores,
as well as providing higher subjective listening scores and im-
proved ASR performance. Meanwhile, the proposed waveform-
based rSDFCN SE system outperformed the spectral-mapping-
based DDAE SE system, which confirms that phase information
is important for multichannel SE.

To the best of our knowledge, this study is one of the first
works that adopt the concept of waveform mapping based on
neural network models to enhance multichannel speech signals.
In this work, both IEM-SE and DM-SE tasks simulated a “vir-
tual” high-performance and near-field microphone to overcome
the distortion caused by channel effects and spatial fading, and
to attain improved speech quality (PESQ), speech intelligibility
(STOI), subjective listening scores, and ASR performance. The
proposed system also shows promising performance on the
CHiME-3 dataset. Please note that different from the beamform-
ing methods that require spatial and time-delay information,
this study investigates the scenario where the speech signals are
recorded by multiple microphones simultaneously. In the future,
we will extend the proposed systems to multichannel tasks
where multiple distortion factors including noise, interference,
and reverberation are involved. Meanwhile, we will explore the
possibility of combining the advantages of waveform-mapping
and spectral-mapping-based multichannel SE methods to further
improve our current systems.
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